3.484 \(\int \cos (e+f x) (b (c \tan (e+f x))^n)^p \, dx\)

Optimal. Leaf size=79 \[ \frac{\sin (e+f x) \cos ^2(e+f x)^{\frac{n p}{2}} \text{Hypergeometric2F1}\left (\frac{n p}{2},\frac{1}{2} (n p+1),\frac{1}{2} (n p+3),\sin ^2(e+f x)\right ) \left (b (c \tan (e+f x))^n\right )^p}{f (n p+1)} \]

[Out]

((Cos[e + f*x]^2)^((n*p)/2)*Hypergeometric2F1[(n*p)/2, (1 + n*p)/2, (3 + n*p)/2, Sin[e + f*x]^2]*Sin[e + f*x]*
(b*(c*Tan[e + f*x])^n)^p)/(f*(1 + n*p))

________________________________________________________________________________________

Rubi [A]  time = 0.0755335, antiderivative size = 79, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {3659, 2617} \[ \frac{\sin (e+f x) \cos ^2(e+f x)^{\frac{n p}{2}} \, _2F_1\left (\frac{n p}{2},\frac{1}{2} (n p+1);\frac{1}{2} (n p+3);\sin ^2(e+f x)\right ) \left (b (c \tan (e+f x))^n\right )^p}{f (n p+1)} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]*(b*(c*Tan[e + f*x])^n)^p,x]

[Out]

((Cos[e + f*x]^2)^((n*p)/2)*Hypergeometric2F1[(n*p)/2, (1 + n*p)/2, (3 + n*p)/2, Sin[e + f*x]^2]*Sin[e + f*x]*
(b*(c*Tan[e + f*x])^n)^p)/(f*(1 + n*p))

Rule 3659

Int[(u_.)*((b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Dist[(b^IntPart[p]*(b*(c*Tan[e + f*x
])^n)^FracPart[p])/(c*Tan[e + f*x])^(n*FracPart[p]), Int[ActivateTrig[u]*(c*Tan[e + f*x])^(n*p), x], x] /; Fre
eQ[{b, c, e, f, n, p}, x] &&  !IntegerQ[p] &&  !IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, ((d_.)*(trig_)[e + f*x]
)^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]])

Rule 2617

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*Sec[e +
f*x])^m*(b*Tan[e + f*x])^(n + 1)*(Cos[e + f*x]^2)^((m + n + 1)/2)*Hypergeometric2F1[(n + 1)/2, (m + n + 1)/2,
(n + 3)/2, Sin[e + f*x]^2])/(b*f*(n + 1)), x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !IntegerQ[(n - 1)/2] &&  !In
tegerQ[m/2]

Rubi steps

\begin{align*} \int \cos (e+f x) \left (b (c \tan (e+f x))^n\right )^p \, dx &=\left ((c \tan (e+f x))^{-n p} \left (b (c \tan (e+f x))^n\right )^p\right ) \int \cos (e+f x) (c \tan (e+f x))^{n p} \, dx\\ &=\frac{\cos ^2(e+f x)^{\frac{n p}{2}} \, _2F_1\left (\frac{n p}{2},\frac{1}{2} (1+n p);\frac{1}{2} (3+n p);\sin ^2(e+f x)\right ) \sin (e+f x) \left (b (c \tan (e+f x))^n\right )^p}{f (1+n p)}\\ \end{align*}

Mathematica [C]  time = 3.50856, size = 482, normalized size = 6.1 \[ \frac{(n p+3) \sin (2 (e+f x)) \left (F_1\left (\frac{1}{2} (n p+1);n p,1;\frac{1}{2} (n p+3);\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )-2 F_1\left (\frac{1}{2} (n p+1);n p,2;\frac{1}{2} (n p+3);\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )\right ) \left (b (c \tan (e+f x))^n\right )^p}{2 f (n p+1) \left ((n p+3) F_1\left (\frac{1}{2} (n p+1);n p,1;\frac{1}{2} (n p+3);\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )-2 \left (\tan ^2\left (\frac{1}{2} (e+f x)\right ) \left (F_1\left (\frac{1}{2} (n p+3);n p,2;\frac{1}{2} (n p+5);\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )-4 F_1\left (\frac{1}{2} (n p+3);n p,3;\frac{1}{2} (n p+5);\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )-n p F_1\left (\frac{1}{2} (n p+3);n p+1,1;\frac{1}{2} (n p+5);\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )+2 n p F_1\left (\frac{1}{2} (n p+3);n p+1,2;\frac{1}{2} (n p+5);\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )\right )+(n p+3) F_1\left (\frac{1}{2} (n p+1);n p,2;\frac{1}{2} (n p+3);\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[e + f*x]*(b*(c*Tan[e + f*x])^n)^p,x]

[Out]

((3 + n*p)*(AppellF1[(1 + n*p)/2, n*p, 1, (3 + n*p)/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] - 2*AppellF1[(
1 + n*p)/2, n*p, 2, (3 + n*p)/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2])*Sin[2*(e + f*x)]*(b*(c*Tan[e + f*x]
)^n)^p)/(2*f*(1 + n*p)*((3 + n*p)*AppellF1[(1 + n*p)/2, n*p, 1, (3 + n*p)/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x
)/2]^2] - 2*((3 + n*p)*AppellF1[(1 + n*p)/2, n*p, 2, (3 + n*p)/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] + (
AppellF1[(3 + n*p)/2, n*p, 2, (5 + n*p)/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] - 4*AppellF1[(3 + n*p)/2,
n*p, 3, (5 + n*p)/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] - n*p*AppellF1[(3 + n*p)/2, 1 + n*p, 1, (5 + n*p
)/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] + 2*n*p*AppellF1[(3 + n*p)/2, 1 + n*p, 2, (5 + n*p)/2, Tan[(e +
f*x)/2]^2, -Tan[(e + f*x)/2]^2])*Tan[(e + f*x)/2]^2)))

________________________________________________________________________________________

Maple [F]  time = 7.773, size = 0, normalized size = 0. \begin{align*} \int \cos \left ( fx+e \right ) \left ( b \left ( c\tan \left ( fx+e \right ) \right ) ^{n} \right ) ^{p}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)*(b*(c*tan(f*x+e))^n)^p,x)

[Out]

int(cos(f*x+e)*(b*(c*tan(f*x+e))^n)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (\left (c \tan \left (f x + e\right )\right )^{n} b\right )^{p} \cos \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)*(b*(c*tan(f*x+e))^n)^p,x, algorithm="maxima")

[Out]

integrate(((c*tan(f*x + e))^n*b)^p*cos(f*x + e), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\left (\left (c \tan \left (f x + e\right )\right )^{n} b\right )^{p} \cos \left (f x + e\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)*(b*(c*tan(f*x+e))^n)^p,x, algorithm="fricas")

[Out]

integral(((c*tan(f*x + e))^n*b)^p*cos(f*x + e), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \left (c \tan{\left (e + f x \right )}\right )^{n}\right )^{p} \cos{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)*(b*(c*tan(f*x+e))**n)**p,x)

[Out]

Integral((b*(c*tan(e + f*x))**n)**p*cos(e + f*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (\left (c \tan \left (f x + e\right )\right )^{n} b\right )^{p} \cos \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)*(b*(c*tan(f*x+e))^n)^p,x, algorithm="giac")

[Out]

integrate(((c*tan(f*x + e))^n*b)^p*cos(f*x + e), x)